
Section 2. CPU
C
P

U

2

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 Introduction .. 2-2

2.2 Programmer’s Model.. 2-5

2.3 Software Stack Pointer... 2-9

2.4 CPU Register Descriptions .. 2-12

2.5 Arithmetic Logic Unit (ALU).. 2-17

2.6 DSP Engine ... 2-18

2.7 Divide Support ... 2-27

2.8 Instruction Flow Types ... 2-28

2.9 Loop Constructs... 2-31

2.10 Address Register Dependencies ... 2-37

2.11 Register Maps .. 2-39

2.12 Related Application Notes.. 2-42

2.13 Revision History ... 2-43
© 2007 Microchip Technology Inc. DS70204A-page 2-1

dsPIC33F Family Reference Manual
2.1 INTRODUCTION

The dsPIC33F CPU has a 16-bit (data) modified Harvard architecture with an enhanced
instruction set, including significant support for digital signal processing. The CPU has a 24-bit
instruction word, with a variable length opcode field. The program counter (PC) is 24 bits wide
and addresses up to 4M x 24 bits of user program memory space.

A single-cycle instruction pre-fetch mechanism helps maintain throughput and provides predict-
able execution. All instructions execute in a single cycle, with the exception of instructions that
change the program flow, the double-word move (MOV.D) instruction and the table instructions.
Overhead free program loop constructs are supported using the DO and REPEAT instructions,
both of which are interruptible at any point.

2.1.1 Registers

The dsPIC33F devices have sixteen 16-bit working registers in the programmer’s model. Each
of the working registers can act as a data, address, or address offset register. The 16th working
register (W15) operates as a software stack pointer for interrupts and calls.

2.1.2 Instruction Set

The dsPIC33F instruction set has two classes of instructions: the MCU class of instructions and
the DSP class of instructions. These two instruction classes are seamlessly integrated into the
architecture and execute from a single execution unit. The instruction set includes many
Addressing modes and was designed for optimum C compiler efficiency.

2.1.3 Data Space Addressing

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks,
referred to as X and Y data memory. Each memory block has its own independent Address
Generation Unit (AGU). The MCU class of instructions operate solely through the X memory
AGU, which accesses the entire memory map as one linear data space. Certain DSP
instructions operate through the X and Y AGUs to support dual operand reads, which splits the
data address space into two parts. The X and Y data space boundary is device specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. The program-to-data-space mapping feature lets any instruction access
program space as if it were data space. Furthermore, RAM can be connected to the program
memory bus on devices with an external bus and used to extend the internal data RAM.

Overhead-free circular buffers (modulo addressing) are supported in both X and Y address
spaces. The modulo addressing removes the software boundary-checking overhead for DSP
algorithms. The X AGU circular addressing can be used with any of the MCU class of instruc-
tions. The X AGU also supports bit-reverse addressing to greatly simplify input or output data
reordering for radix-2 FFT algorithms.

2.1.4 Addressing Modes

The CPU supports these addressing modes:

• Inherent (no operand)

• Relative

• Literal

• Memory Direct

• Register Direct

• Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its
functional requirements. As many as six Addressing modes are supported for each instruction.
DS70204A-page 2-2 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

For most instructions, the dsPIC33F can execute these functions in a single instruction cycle:

• Data (or program data) memory read

• Working register (data) read

• Data memory write

• Program (instruction) memory read

As a result, three operand instructions can be supported, allowing A+B=C operations to be
executed in a single cycle.

2.1.5 DSP Engine and Instructions

The DSP engine features:

• A high speed, 17-bit by 17-bit multiplier

• A 40-bit ALU

• Two 40-bit saturating accumulators

• A 40-bit bidirectional barrel shifter, capable of shifting a 40-bit value up to 16 bits right, or up
to 16 bits left, in a single cycle

The DSP instructions operate seamlessly with all other instructions and are designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two W registers. This requires that the
data space be split for these instructions and linear for all others. This is achieved in a transparent
and flexible manner, through dedicating certain working registers to each address space.

2.1.6 Exception Processing

The dsPIC33F has a vectored exception scheme with up to eight sources of non-maskable
traps and 118 interrupt sources. Each interrupt source can be assigned to one of seven priority
levels.

Figure 2-1 shows a block diagram of the CPU.
© 2007 Microchip Technology Inc. DS70204A-page 2-3

dsPIC33F Family Reference Manual
Figure 2-1: dsPIC33F CPU Block Diagram

Power-up
Timer

Oscillator
Start-up Timer

Instruction
Decode &
Control

OSC1/CLKI

MCLR

VDD, VSS

 UART1,

 ECAN2

Timing
Generation

ECAN1,

16

PCH PCL

16

Program Counter

16-bit ALU

24

24

24

24

X Data Bus

 I
R

I2C™

DCI

PCU

10-bit or

 Timers

Input
Capture
Module

 Output
Compare
Module

16

 16 16

 16 x 16
W Reg Array

Divide
Support

Engine
DSP

R
O

M
 L

at
ch

16

Y Data Bus

EA MUX

X RAGU
X WAGU

Y AGU

AVDD, AVSS

UART2SPI2

 16

 16

16

16

 16

16

16

 16

16

8

Interrupt
Controller PSV & Table

Data Access
Control Block

Stack
Control

Logic

Loop
Control
Logic

Data LatchData Latch

Y Data
RAM

X Data
RAM

Address
Latch

Address
Latch

Control Signals
to Various Blocks

16

SPI1,

Data Latch

I/O Ports

16

 16

 16

X Address Bus

Y
 A

dd
re

ss
 B

us

 16

Li
te

ra
l D

at
a

12-bit ADC

Program Memory

Watchdog
Timer

Reset
POR/BOR

Address Latch
DS70204A-page 2-4 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.2 PROGRAMMER’S MODEL

The programmer’s model for the dsPIC33F is shown in Figure 2-2. All registers in the
programmer’s model are memory mapped and can be manipulated directly by instructions.
Table 2-1 providess a description of each register.

In addition to the registers contained in the programmer’s model, the dsPIC33F contains control
registers for modulo addressing, bit-reversed addressing and interrupts. These registers are
described in subsequent sections of this document.

All registers associated with the programmer’s model are memory mapped, as shown in
Table 2-9.

Table 2-1: Programmer’s Model Register Descriptions

Register(s) Name Description

W0 through W15 Working register array

ACCA, ACCB 40-bit DSP Accumulators

PC 23-bit Program Counter

SR ALU and DSP Engine Status register

SPLIM Stack Pointer Limit Value register

TBLPAG Table Memory Page Address register

PSVPAG Program Space Visibility Page Address register

RCOUNT REPEAT Loop Count register

DCOUNT DO Loop Count register

DOSTART DO Loop Start Address register

DOEND DO Loop End Address register

CORCON Contains DSP Engine and DO Loop control bits
© 2007 Microchip Technology Inc. DS70204A-page 2-5

dsPIC33F Family Reference Manual
Figure 2-2: Programmer’s Model

N OV SZ C

TBLPAG

22 0

7 0

 015

Program Counter

Data Table Page Address

Status Register

Working/Address
Registers

DSP Operand
Registers

W0 (WREG)

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

 Frame Pointer/W14

Stack Ptr/W15

DSP Address
Registers

39 031

DSP
Accumulators

PSVPAG

7 0
Program Space Visibility

RA

0

OA OB SA SB

RCOUNT
15 0

32

DCOUNT
15 0

DO Loop Counter

DOSTART
22 0

DO Loop Start Address

DOEND DO Loop End Address

IPL<2:0>

SPLIM Stack Pointer Limit

15

22 0

SRL

PUSH.S and POP.S Shadows

0

0

OAB SAB

Page Address

DA DC

CORCON
15 0

Core Control Register

ACCAH ACCALACCAU

ACCBU ACCBH ACCBL

ACCA
ACCB

SRH

0

0

Note: DCOUNT, DOSTART and DOEND have one level of shadow registers (not shown) for nested DO loops.
DS70204A-page 2-6 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.2.1 Working Register Array

The 16 working (W) registers can function as data, address or address offset registers. The
function of a W register is determined by the Addressing mode of the instruction that accesses it.

The dsPIC33F instruction set can be divided into two instruction types: register and file register
instructions.

2.2.1.1 REGISTER INSTRUCTIONS

Register instructions can use each W register as a data value or an address offset value. For
example:

MOV W0,W1 ; move contents of W0 to W1
MOV W0,[W1] ; move W0 to address contained in W1
ADD W0,[W4],W5 ; add contents of W0 to contents pointed

; to by W4. Place result in W5

2.2.1.2 FILE REGISTER INSTRUCTIONS

File register instructions operate on a specific memory address contained in the instruction
opcode and register W0. W0 is a special working register used in file register instructions.
Working registers W1-W15 cannot be specified as target registers in file register instructions.

The file register instructions provide backward compatibility with existing PICmicro® devices,
which have only one W register. The label ‘WREG’ is used in the assembler syntax to denote W0
in a file register instruction. For example:

MOV WREG,0x0100 ; move contents of W0 to address 0x0100
ADD 0x0100,WREG ; add W0 to address 0x0100, store in W0

2.2.1.3 W REGISTER MEMORY MAPPING

Since the W registers are memory mapped, it is possible to access a W register in a file register
instruction as follows:

MOV 0x0004, W10 ; equivalent to MOV W2, W10

where 0x0004 is the address in memory of W2.

Further, it is also possible to execute an instruction that uses a W register as both an address
pointer and operand destination. For example:

MOV W1,[W2++]

where:

W1 = 0x1234
W2 = 0x0004 ;[W2] addresses W2

In the example above, the contents of W2 are 0x0004. Since W2 is used as an address pointer,
it points to location 0x0004 in memory. W2 is also mapped to this address in memory. Even
though this is an unlikely event, it is impossible to detect until run time. The dsPIC33F ensures
that the data write dominates, resulting in W2 = 0x1234 in the example above.

2.2.1.4 W REGISTERS AND BYTE MODE INSTRUCTIONS

Byte instructions that target the W register array affect only the Least Significant Byte of the target
register. Since the working registers are memory mapped, the Least and Most Significant Bytes
can be manipulated through byte-wide data memory space accesses.

Note: For a complete description of Addressing modes and instruction syntax, refer to the
“dsPIC30F/dsPIC33F Programmer’s Reference Manual (DS70157)”.
© 2007 Microchip Technology Inc. DS70204A-page 2-7

dsPIC33F Family Reference Manual
2.2.2 Shadow Registers

Many of the registers in the programmer’s model have an associated shadow register, as shown
in Figure 2-2. None of the shadow registers are accessible directly. There are two types of
shadow registers:

• Those used by the PUSH.S and POP.S instructions

• Those used by the DO instruction

2.2.2.1 PUSH.S AND POP.S SHADOW REGISTERS

The PUSH.S and POP.S instructions are useful for fast context save/restore during a function call
or Interrupt Service Routine (ISR). The PUSH.S instruction transfers the following register values
into their respective shadow registers:

• W0...W3

• SR (N, OV, Z , C, DC bits only)

The POP.S instruction restores the values from the shadow registers into these register
locations. Following is a code example using the PUSH.S and POP.S instructions:

MyFunction:

PUSH.S ; Save W registers, MCU status
MOV #0x03,W0 ; load a literal value into W0
ADD RAM100 ; add W0 to contents of RAM100
BTSC SR,#Z ; is the result 0?
BSET Flags,#IsZero ; Yes, set a flag
POP.S ; Restore W regs, MCU status
RETURN

The PUSH.S instruction overwrites the contents previously saved in the shadow registers. The
shadow registers are only one level in depth, so care must be taken if the shadow registers are
to be used for multiple software tasks.

The user application must ensure that any task using the shadow registers are not interrupted by
a higher-priority task that also uses the shadow registers. If the higher-priority task is allowed to
interrupt the lower priority task, the contents of the shadow registers saved in the lower priority
task are overwritten by the higher priority task.

2.2.2.2 DO LOOP SHADOW REGISTERS

The following registers are automatically saved in shadow registers when a DO instruction is
executed:

• DOSTART

• DOEND

• DCOUNT

The DO shadow registers are one level in depth, permitting two loops to be automatically nested.
For further details refer to Section 2.9.2.2 “DO Loop Nesting”.

2.2.3 Uninitialized W Register Reset

The W register array (with the exception of W15) is cleared during all Resets and is considered
uninitialized until written to. An attempt to use an uninitialized register as an address pointer will
reset the device.

A word write must be performed to initialize a W register. A byte write will not affect the initialization
detection logic.
DS70204A-page 2-8 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.3 SOFTWARE STACK POINTER

The W15 register serves as a dedicated software stack pointer and is automatically modified by
exception processing, subroutine calls and returns; however, W15 can be referenced by any
instruction in the same manner as all other W registers. This simplifies reading, writing and
manipulating of the stack pointer (for example, creating stack frames).

W15 is initialized to 0x0800 during all Resets. This address ensures that the stack pointer (SP)
points to valid RAM in all dsPIC33F devices and permits stack availability for non-maskable trap
exceptions. These can occur before the SP is initialized by the user software. You can reprogram
the SP during initialization to any location within data space.

The stack pointer always points to the first available free word and fills the software stack working
from lower toward higher addresses. Figure 2-3 shows how it pre-decrements for a stack pop
(read) and post-increments for a stack push (writes).

When the Program Counter (PC) is pushed onto the stack, PC<15:0> is pushed onto the first
available stack word, then PC<22:16> is pushed into the second available stack location. For a
PC push during any CALL instruction, the Most Significant Byte (MSB) of the PC is zero-extended
before the push, as shown in Figure 2-3. During exception processing, the MSB of the PC is
concatenated with the lower 8 bits of the CPU status register, SR. This allows the contents of
SRL to be preserved automatically during interrupt processing.

Figure 2-3: Stack Operation for a CALL Instruction

2.3.1 Software Stack Examples

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 used as the destination pointer. For
example, the contents of W0 can be pushed onto the stack by:

PUSH W0

This syntax is equivalent to:

MOV W0,[W15++]

The contents of the top-of-stack can be returned to W0 by:

POP W0

This syntax is equivalent to:

MOV [--W15],W0

Figure 2-4 through Figure 2-7 show examples of how the software stack is used. Figure 2-4
shows the software stack at device initialization. W15 has been initialized to 0x0800. This
example assumes the values 0x5A5A and 0x3636 have been written to W0 and W1, respectively.
The stack is pushed for the first time in Figure 2-5 and the value contained in W0 is copied to the

Note: To protect against misaligned stack accesses, W15<0> is fixed to ‘0’ by the
hardware.

<Free Word>

PC<15:0>
PC<22:16>

015

W15 (before CALL)

W15 (after CALL)

S
ta

ck
 G

ro
w

s
To

w
ar

ds
H

ig
he

r
A

dd
re

ss

B‘000000000’

CALL SUBR
© 2007 Microchip Technology Inc. DS70204A-page 2-9

dsPIC33F Family Reference Manual
stack. W15 is automatically updated to point to the next available stack location (0x0802). In
Figure 2-6, the contents of W1 are pushed onto the stack. Figure 2-7 shows how the stack is
popped and the top-of-stack value (previously pushed from W1) is written to W3.

Figure 2-4: Stack Pointer at Device Reset

Figure 2-5: Stack Pointer After the First PUSH Instruction

Figure 2-6: Stack Pointer After the Second PUSH Instruction

Figure 2-7: Stack Pointer After a POP Instruction

0x0000

0xFFFE

0x0800W15

W15 = 0x0800
W0 = 0x5A5A
W1 = 0x3636

0x0000

0xFFFE

0x5A5A

W15 = 0x0802
W0 = 0x5A5A
W1 = 0x3636

0x0800 PUSH W0

0x0802W15

0x0000

0xFFFE

0x5A5A
0x3636

W15 = 0x0804
W0 = 0x5A5A
W1 = 0x3636

0x0800
PUSH W1

0x0802
0x0804W15

0x0000

0xFFFE

0x05A5A
0x03636

0x3636 → W3
W15 = 0x0802

POP W3

0x0802
0x0800

W15
DS70204A-page 2-10 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.3.2 W14 Software Stack Frame Pointer

A frame is a user-defined section of memory in the stack that is used by a single subroutine.
Working register W14 can be used as a stack frame pointer with the LNK (link) and ULNK (unlink)
instructions. W14 can be used in a normal working register by instructions when it is not used as
a frame pointer.

For software examples that use W14 as a stack frame pointer, refer to the “dsPIC30F/dsPIC33F
Programmer’s Reference Manual” (DS70157).

2.3.3 Stack Pointer Overflow

The Stack Pointer Limit register (SPLIM) specifies the size of the stack buffer. SPLIM is a 16-bit
register, but SPLIM<0> is fixed to ‘0’ because all stack operations must be word aligned.

The stack overflow check is not enabled until a word write to SPLIM occurs. After this it can only
be disabled by a device Reset. All effective addresses generated using W15 as a source or des-
tination are compared against the value in SPLIM. If the contents of the Stack Pointer (W15)
exceed the contents of the SPLIM register by 2, and a push operation is performed, a stack error
trap occurs on a subsequent push operation. Thus, for example, if it is desirable to cause a stack
error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the
value 0x1FFE.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 effective address
calculation wraps over the end of data space (0xFFFF).

For more information on the stack error trap, refer to Section 6. “Reset Interrupts”.

2.3.4 Stack Pointer Underflow

The stack is initialized to 0x0800 during a Reset. A stack error trap is initiated if the stack pointer
address is less than 0x0800.

Note: A stack error trap can be caused by any instruction that uses the contents of the
W15 register to generate an effective address (EA). Thus, if the contents of W15 are
2 greater than the contents of the SPLIM register, and a CALL instruction is
executed, or if an interrupt occurs, a stack error trap is generated.

Note: A write to the Stack Pointer Limit register, SPLIM, should not be followed by an
indirect read operation using W15.

Note: Locations in data space between 0x0000 and 0x07FF are, in general, reserved for
core and peripheral special function registers.
© 2007 Microchip Technology Inc. DS70204A-page 2-11

dsPIC33F Family Reference Manual
2.4 CPU REGISTER DESCRIPTIONS

2.4.1 SR: CPU Status Register

The dsPIC33F CPU has a 16-bit status register (SR). A detailed description of the CPU Status
Register is shown in Register 2-1. The Least Significant Byte (LSB) of this register is referred to
as the SRL (Status Register, Lower Byter). The Most Significant Byte (MSB) is referred to as SRH
(Status Register, Higher Byte).

SRL contains:

• All the MCU ALU operation status flags

• The CPU interrupt priority status bits, IPL<2:0>

• The REPEAT loop active status bit, RA (SR<4>)

During exception processing, SRL is concatenated with the MSB of the Program Counter to form
a complete word value, which is then stacked.

SRH contains:

• The DSP Adder/Subtractor status bits

• The DO loop active bit, DA (SR<9>)

• The Digit Carry bit, DC (SR<8>)

The SR bits are readable/writable with the following exceptions:

• The DA bit (SR<8>) is read-only

• The RA bit (SR<4>) is read-only

• The OA, OB (SR<15:14>) and OAB (SR<11>) bits are read-only and can only be modified
by the DSP engine hardware

• The SA, SB (SR<13:12>) and SAB (SR<10>) bits are read- and clear-only and can only be
set by the DSP engine hardware. Once set, they remain set until cleared by the user
application, irrespective of the results from any subsequent DSP operations

2.4.2 CORCON: Core Control Register

The CORCON register contains bits that control the operation of the DSP multiplier and DO loop
hardware. The CORCON register also contains the IPL3 status bit, which is concatenated with
IPL<2:0> (SR<7:5>), to form the CPU Interrupt Priority Level.

Note: Clearing the SAB bit also clears both the SA and SB bits.

Note: A description of the SR bits affected by each instruction is provided in the
“dsPIC30F/dsPIC33F Programmer’s Reference Manual” (DS70157).
DS70204A-page 2-12 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

Register 2-1: SR: CPU Status Register

R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0

OA OB SA SB OAB SAB DA DC

bit 15 bit 8

R/W-0(2) R/W-0(2) R/W-0(2) R-0 R/W-0 R/W-0 R/W-0 R/W-0

IPL<2:0> RA N OV Z C

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit
1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow Status bit
1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit
1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated

Note: This bit can be read or cleared (not set).

bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit
1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated

Note: This bit can be read or cleared (not set).

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit
1 = Accumulators A or B are saturated or have been saturated at some time
0 = Neither Accumulator A or B are saturated

Note: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

bit 9 DA: DO Loop Active bit
1 = DO loop in progress
0 = DO loop not in progress

bit 8 DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data)

of the result occurred
0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data)

of the result occurred
© 2007 Microchip Technology Inc. DS70204A-page 2-13

dsPIC33F Family Reference Manual
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1)

111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU
Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User
interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> status bits are read only when NSTDIS = 1 (INTCON1<15>).

bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress

bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Register 2-1: SR: CPU Status Register
DS70204A-page 2-14 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

Register 2-2: CORCON: Core Control Register

U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0

— — — US EDT DL<2:0>

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0

SATA SATB SATDW ACCSAT IPL3 PSV RND IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0’

bit 12 US: DSP Multiply Unsigned/Signed Control bit
1 = DSP engine multiplies are unsigned
0 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit
1 = Terminate executing DO loop at end of current loop iteration
0 = No effect

Note: This bit always reads as ‘0’.

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits
111 = 7 DO loops active
•
•
001 = 1 DO loop active
000 = 0 DO loops active

bit 7 SATA: AccA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled

bit 6 SATB: AccB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

Note: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt
priority level.

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply
0 = Fractional mode enabled for DSP multiply
© 2007 Microchip Technology Inc. DS70204A-page 2-15

dsPIC33F Family Reference Manual
2.4.3 Other dsPIC33F CPU Control Registers

The following registers are associated with the dsPIC33F CPU, but are described in further detail
in other sections of this manual.

• TBLPAG: Table Page Register
The TBLPAG register holds the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program
memory space and data memory space. For further details, refer to Section 4. “Program
Memory”.

• fPSVPAG: Program Space Visibility Page Register
Program space visibility allows the user application to map a 32-KByte section of the pro-
gram memory space into the upper 32 Kbytes of data address space. This feature allows
transparent access to constant data through dsPIC33F instructions that operate on data
memory. The PSVPAG register selects the 32 Kbyte region of program memory space that
is mapped to the data address space. For more information on the PSVPAG register, refer
to Section 4. “Program Memory”.

• MODCON: Modulo Control Register
The MODCON register enables and configures modulo addressing (circular buffers). For
further details on modulo addressing, refer to Section 3. “Data Memory”.

• XMODSRT, XMODEND: X Modulo Start and End Address Registers
The XMODSRT and XMODEND registers hold the start and end addresses for modulo
(circular) buffers implemented in the X data memory address space. For further details on
module addressing, refer to Section 3. “Data Memory”.

• YMODSRT, YMODEND: Y Modulo Start and End Address Registers
The YMODSRT and YMODEND registers hold the start and end addresses for modulo (cir-
cular) buffers implemented in the Y data memory address space. For further details on
module addressing, refer to Section 3. “Data Memory”.

• XBREV: X Modulo Bit-Reverse Register
The XBREV register sets the buffer size used for bit-reversed addressing. For further
details on bit-reversed addressing, refer to Section 3. “Data Memory”.

• DISICNT: Disable Interrupts Count Register
The DISICNT register is used by the DISI instruction to disable interrupts of priority 1-6 for
a specified number of cycles. For further information, refer to Section 6. “Reset
Interrupts” .
DS70204A-page 2-16 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.5 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33F ALU is 16 bits wide and is capable of addition, subtraction, single bit shifts and
logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in
nature. Depending on the operation, the ALU can affect the values of these bits in the SR
register:

• Carry (C)

• Zero (Z)

• Negative (N)

• Overflow (OV)

• Digit Carry (DC)

The C and DC status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction
operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is
used. Data for the ALU operation can come from the W register array or data memory depending
on the Addressing mode of the instruction. Likewise, output data from the ALU can be written to
the W register array or a data memory location.

For information on the SR bits affected by each instruction, Addressing modes, and 8-bit/16-bit
Instruction modes, refer to the “dsPIC30F/dsPIC33F Programmer’s Reference Manual”
(DS70157)..

2.5.1 Byte to Word Conversion

The dsPIC33F has two instructions that are helpful when mixing 8-bit and 16-bit ALU operations.

• The Sign-extend (SE) instruction takes a byte value in a W register or data memory and
creates a sign-extended word value that is stored in a W register.

• The Zero-extend (ZE) instruction clears the 8 MSbs of a word value in a W register or data
memory and places the result in a destination W register.

Note 1: Byte operations use the 16-bit ALU and can produce results in excess of 8 bits.
However, to maintain backward compatibility with PICmicro devices, the ALU result
from all byte operations is written back as a byte (i.e., MSB is not modified), and the
SR register is updated based only upon the state of the LSB of the result.

2: All register instructions performed in Byte mode affect only the LSB of the W
registers. The MSB of any W register can be modified by using file register
instructions that access the memory mapped contents of the W registers.
© 2007 Microchip Technology Inc. DS70204A-page 2-17

dsPIC33F Family Reference Manual
2.6 DSP ENGINE

The DSP engine is a block of hardware that is fed data from the W register array, but contains its
own specialized result registers. The DSP engine is driven from the same instruction decoder
that directs the MCU ALU. In addition, all operand effective addresses (EAs) are generated in the
W register array. Concurrent operation with MCU instruction flow is not possible, though both the
MCU ALU and DSP engine resources can be shared by all instructions in the instruction set.

The DSP engine consists of the following components:

• High speed 17-bit-by-17-bit multiplier

• Barrel shifter

• 40-bit adder/subtractor

• Two target accumulator registers

• Rounding logic with selectable modes

• Saturation logic with selectable modes

Data input to the DSP engine is derived from one of the following sources:

• Directly from the W array (registers W4, W5, W6 or W7) for dual source operand DSP
instructions. Data values for the W4, W5, W6 and W7 registers are pre-fetched via the X
and Y memory data buses

• From the X memory data bus for all other DSP instructions

Data output from the DSP engine is written to one of the following destinations:

• The target accumulator, as defined by the DSP instruction being executed

• The X memory data bus to any location in the data memory address space

The DSP engine can perform inherent accumulator-to-accumulator operations that require no
additional data.

The MCU shift and multiply instructions use the DSP engine hardware to obtain their results. The
X memory data bus is used for data reads and writes in these operations.

Figure 2-8. shows a block diagram of the DSP engine.

Note: For detailed code examples and instruction syntax related to this section, refer to
the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157).(
DS70204A-page 2-18 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

Figure 2-8: DSP Engine Block Diagram

Zero Backfill

Sign-Extend

Barrel
Shifter

40-bit Accumulator A
40-bit Accumulator B

R
ou

nd
 L

og
ic

X
 D

at
a

B
us

To/From W Array

Adder

Saturate

Negate

32

32
32

16

16 16

16

40 40

40 40
Y

 D
at

a
B

us

40

16

40

Multiplier/Scaler

17-bit x 17-bit

16-bit to 17-bit
Conversion

S
at

ur
at

io
n

Lo
gi

c

© 2007 Microchip Technology Inc. DS70204A-page 2-19

dsPIC33F Family Reference Manual
2.6.1 Data Accumulators

Two 40-bit data accumulators, ACCA and ACCB, are the result registers for the DSP instructions
listed in Table 2-3. Each accumulator is memory mapped to these three registers, where ‘x’
denotes the particular accumulator:

• ACCxL: ACCx<15:0>

• ACCxH: ACCx<31:16>

• ACCxU: ACCx<39:32>

For fractional operations that use the accumulators, the radix point is located to the right of
bit 31. The range of fractional values that can be stored in each accumulator is -256.0 to
(256.0 – 2-31).
For integer operations that use the accumulators, the radix point is located to the right of bit 0.
The range of integer values that can be stored in each accumulator is -549,755,813,888 to
549,755,813,887.

2.6.2 Multiplier

The dsPIC33F features a 17-bit-by-17-bit multiplier shared by both the MCU ALU and the DSP
engine. The multiplier is capable of signed or unsigned operation and supports either 1.31
fractional (Q.31) or 32-bit integer results.

The multiplier takes in 16-bit input data and converts the data to 17 bits. Signed operands to the
multiplier are sign-extended. Unsigned input operands are zero-extended. The internal 17-bit
representation of data in the multiplier allows correct execution of mixed-sign and unsigned
16-bit-by-16-bit multiplication operations.

The representation of data in hardware for Integer and Fractional Multiplier modes is as follows:

• Integer data is inherently represented as a signed two’s complement value, where the Most
Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two’s
complement integer is -2N-1 to 2N-1 – 1.

• Fractional data is represented as a two’s complement fraction where the MSb is defined as
a sign bit and the radix point is implied to lie just after the sign bit (Q.X format). The range of
an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 21-N).

The range of data in both Integer and Fractional modes is listed in Table 2-2. Figure 2-9 and
Figure 2-10 illustrate how the multiplier hardware interprets data in Integer and Fractional modes.

The Integer or Fractional Multiplier Mode Select (IF) bit (CORCON<0>) determines integer/frac-
tional operation for the instructions listed in Table 2-3. The IF bit does not affect MCU multiply
instructions listed in Table 2-4, which are always integer operations. The multiplier scales the
result one bit to the left for fractional operation. The Least Significant Bit (LSb) of the result is
always cleared. The multiplier defaults to Fractional mode for DSP operations at a device Reset.

Table 2-2: dsPIC33F Data Ranges

Register
Size

Integer Range Fraction Range
Fraction

Resolution

16-bit -32768 to
 32767

-1.0 to (1.0 – 2-15)
(Q.15 Format)

3.052 x 10-5

32-bit -2,147,483,648 to
 2,147,483,647

-1.0 to (1.0 – 2-31)
(Q.31 Format)

4.657 x 10-10

40-bit -549,755,813,888 to
 549,755,813,887

-256.0 to (256.0 – 2-31)
(Q.31 Format with 8 Guard bits)

4.657 x 10-10
DS70204A-page 2-20 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

Figure 2-9: Integer and Fractional Representation of 0x4001

Figure 2-10: Integer and Fractional Representation of 0xC002

Different Representations of 0x4001

Integer:

 -215 214 213 212

0x4001 = 214 + 20 = 16385

1.15 Fractional:

2-15

0

 2-1 2-2 2-3 . . . -20

20

0x4001 = 2-1 + 2-15 = 0.500030518

Implied Radix Point

.

1 10 0 0 0 0 0 0 0 0 0 0 0 0

0 1 10 0 0 0 0 0 0 0 0 0 0 0 0

Different Representations of 0xC002

Integer:

 -215 214 213 212

0xC002 = -215 + 214 + 20 = -32768 + 16384 + 2 = -16382

1.15 Fractional:

2-15 . 2-1 2-2 2-3 . . . -20

20

0xC002 = -20 + 2-1 + 2-14 = -1 + 0.5 + 0.000061035 = -0.499938965

Implied Radix Point

1 1 00 0 0 0 0 0 0 0 0 0 0 0 1

1 1 00 0 0 0 0 0 0 0 0 0 0 0 1
© 2007 Microchip Technology Inc. DS70204A-page 2-21

dsPIC33F Family Reference Manual
2.6.2.1 DSP MULTIPLY INSTRUCTIONS

The DSP instructions that use the multiplier are summarized in Table 2-3.

Table 2-3: DSP Instructions that Use the Multiplier

The DSP Multiplier Unsigned/Signed Control (US) bit (CORCON<12>) determines whether DSP
multiply instructions are signed (default) or unsigned. The US bit does not influence the MCU
multiply instructions, which have specific instructions for signed or unsigned operation. If the US
bit is set, the input operands for instructions shown in Table 2-3 are considered as unsigned val-
ues, which are always zero-extended into the 17th bit of the multiplier value.

2.6.2.2 MCU MULTIPLY INSTRUCTIONS

The same multiplier supports the MCU multiply instructions, which include integer 16-bit signed,
unsigned and mixed sign multiplies as shown in Table 2-4. All multiplications performed by the
MUL instruction produce integer results. The MUL instruction can be directed to use byte or word
sized operands. Byte input operands produce a 16-bit result and word input operands produce a
32-bit result to the specified register(s) in the W array.

Table 2-4: MCU Instructions that Utilize the Multiplier

DSP Instruction Description Algebraic Equivalent

MAC Multiply and Add to Accumulator or
Square and Add to Accumulator

a = a + b*c

a = a + b2

MSC Multiply and Subtract from Accumulator a = a – b*c

MPY Multiply a = b*c

MPY.N Multiply and Negate Result a = -b*c

ED Partial Euclidean Distance a = (b – c)2

EDAC Add Partial Euclidean Distance to the
Accumulator

a = a + (b – c)2

Note: DSP instructions using the multiplier can operate in Fractional (1.15) or Integer
modes.

MCU Instruction Description

MUL/MUL.UU Multiply two unsigned integers

MUL.SS Multiply two signed integers

MUL.SU/MUL.US Multiply a signed integer with an unsigned integer

Note 1: MCU instructions using the multiplier operate only in Integer mode.
2: Result of an MCU multiply is 32 bits long and is stored in a pair of W registers.
DS70204A-page 2-22 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.6.3 Data Accumulator Adder/Subtractor

The data accumulators have a 40-bit adder/subtractor with automatic sign extension logic for the
multiplier result (if signed). It can select one of two accumulators (A or B) as its pre-accumulation
source and post-accumulation destination. For the ADD (accumulator) and LAC instructions, the
data to be accumulated or loaded can optionally be scaled via the barrel shifter prior to
accumulation.

The 40-bit adder/subtractor can optionally negate one of its operand inputs to change the sign of
the result (without changing the operands). The negate is used during multiply and subtract
(MSC), or multiply and negate (MPY.N) operations.

The 40-bit adder/subtractor has an additional saturation block that controls accumulator data
saturation, if enabled.

2.6.3.1 ACCUMULATOR STATUS BITS

Six Status register bits that support saturation and overflow are located in the CPU Status
register (SR), and are listed in Table 2-5:

Table 2-5: Accumulator Overflow and Saturation Status Bits

The OA and OB bits are read-only and are modified each time data passes through the
accumulator add/subtract logic. When set, they indicate that the most recent operation has over-
flowed into the accumulator guard bits (bits 32 through 39). This type of overflow is not
catastrophic; the guard bits preserve the accumulator data. The OAB status bit is the logically
OR value of OA and OB.

The OA and OB bits, when set, can optionally generate an arithmetic error trap. The trap is
enabled by setting the corresponding Overflow Trap Flag Enable bit (OVATE or OVBTE) in
Interrupt Control Register 1 (INTCON1<10> or <9>) in the Interrupt controller. The trap event
allows the user to take immediate corrective action, if desired.

The SA and SB bits can be set each time data passes through the accumulator saturation logic.
Once set, these bits remain set until cleared by the user application. The SAB status bit indicates
the logical OR value of SA and SB. The SA and SB bits are cleared when SAB is cleared. When
set, these bits indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit
saturation or bit 39 for 40-bit saturation) and are saturated (if saturation is enabled).

When saturation is not enabled, the SA and SB bits indicate that a catastrophic overflow has
occurred (the sign of the accumulator has been destroyed). If the Catastrophic Overflow Trap
Enable (COVTE) bit (INTCON1<8>) is set, SA and SB bits will generate an arithmetic error trap
when saturation is disabled.

Status Bit Location Description

OA SR<15> Accumulator A overflowed into guard bits (ACCA<39:32>)

OB SR<14> Accumulator B overflowed into guard bits (ACCB<39:32>)

SA SR<13> ACCA saturated (bit 31 overflow and saturation)
or
ACCA overflowed into guard bits and saturated
(bit 39 overflow and saturation)

SB SR<12> ACCB saturated (bit 31 overflow and saturation)
or
ACCB overflowed into guard bits and saturated
(bit 39 overflow and saturation)

OAB SR<11> OA logically ORed with OB

SAB SR<10> SA logically ORed with SB
Clearing SAB also clears SA and SB

Note: For further information on arithmetic warning traps, refer to Section 6. “Reset
Interrupts”..
© 2007 Microchip Technology Inc. DS70204A-page 2-23

dsPIC33F Family Reference Manual
2.6.3.2 SATURATION AND OVERFLOW MODES

The dsPIC33F CPU supports three Saturation and Overflow modes.

• Accumulator 39-bit Saturation:
In this mode, the saturation logic loads the maximally positive 9.31 value (0x7FFFFFFFFF),
or maximally negative 9.31 value (0x8000000000), into the target accumulator. The SA or
SB bit is set and remains set until cleared by the user application. This Saturation mode is
useful for extending the dynamic range of the accumulator.

To configure for this mode of saturation, set the Accumulator Saturation Mode Select
(ACCSAT) bit (CORCON<4>). Additionally, set the AccA Saturation Enable (SATA) bit
(CORCON<7>, and/or the AccB Saturation Enable (SATB) bit (CORCON< 6>) to enable accu-
mulator saturation.

• Accumulator 31-bit Saturation:
In this mode, the saturation logic loads the maximally positive 1.31 value (0x007FFFFFFF)
or maximally negative 1.31 value (0xFF80000000) into the target accumulator. The SA or
SB bit is set and remains set until cleared by the user. When this Saturation mode is in
effect, the guard bits 32 through 39 are not used except for sign-extension of the accumula-
tor value. Consequently, the OA, OB or OAB bits in SR are never set.

To configure for this mode of overflow and saturation, the ACCSAT (CORCON<4>) bit must be
cleared. Additionally, the SATA (CORCON<7>) and/or SATB (CORCON<6>) bits must be set
to enable accumulator saturation.

• Accumulator Catastrophic Overflow:
If the SATA (CORCON<7>) and/or SATB (CORCON<6>) bits are not set, then no satura-
tion operation is performed on the accumulator, and the accumulator is allowed to overflow
all the way up to bit 39 (destroying its sign). If the Catastrophic Overflow Trap Enable
(COVTE) bit (INTCON1<8> in the Interrupt controller) is set, a catastrophic overflow
initiates an arithmetic error trap.

Accumulator saturation and overflow detection can only result from the execution of a DSP
instruction that modifies one of the two accumulators via the 40-bit DSP ALU. Saturation and
overflow detection do not take place when the accumulators are accessed as memory mapped
registers via MCU class instructions. Furthermore, the accumulator status bits shown in
Table 2-5 are not modified. However, the MCU status bits (Z, N, C, OV, DC) will be modified,
depending on the MCU instruction that accesses the accumulator.

2.6.3.3 DATA SPACE WRITE SATURATION

In addition to adder/subtractor saturation, writes to data space can be saturated without affecting
the contents of the source accumulator. This feature allows data to be limited, while not
sacrificing the dynamic range of the accumulator during intermediate calculation stages. Data
space write saturation is enabled by setting the Data Space Write from DSP Engine Saturation
Enable (SATDW) control bit (CORCON<5>). Data space write saturation is enabled by default at
a device Reset.

The data space write saturation feature works with the SAC and SAC.R instructions. The value
held in the accumulator is never modified when these instructions are executed. The hardware
takes the following steps to obtain the saturated write result:

1. The read data is scaled based upon the arithmetic shift value specified in the instruction.

2. The scaled data is rounded (SAC.R only).

3. The scaled/rounded value is saturated to a 16-bit result based on the value of the guard
bits. For data values greater than 0x007FFF, the data written to memory is saturated to
the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written
to memory is saturated to the maximum negative 1.15 value, 0x8000.

Note: The SA, SB and SAB status bits can have different meanings depending on whether
accumulator saturation is enabled. The Accumulator Saturation mode is controlled
via the CORCON register.

Note: For further information on arithmetic error traps, refer to Section 6. “Reset
Interrupts” f.
DS70204A-page 2-24 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.6.3.4 ACCUMULATOR ‘WRITE BACK’

The MAC and MSC instructions can optionally write a rounded version of the accumulator that is
not the target of the current operation into data space memory. The write is performed across the
X bus into combined X and Y address space. This accumulator write-back feature is beneficial
in certain FFT and LMS algorithms.

The following Addressing modes are supported by the accumulator write back hardware:

• W13, register direct:
The rounded contents of the non-target accumulator are written into W13 as a 1.15
fractional result.

• [W13]+=2, register indirect with post-increment:
The rounded contents of the non-target accumulator are written into the address pointed to
by W13 as a 1.15 fraction. W13 is then incremented by 2.

2.6.4 Round Logic

The round logic can perform a conventional (biased) or convergent (unbiased) round function
during an accumulator write (store). The Round mode is determined by the state of the Rounding
Mode Select (RND) bit (CORCON<1>). It generates a 16-bit, 1.15 data value, which is passed
to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated
1.15 data value is stored.

The two Rounding modes are shown in Figure 2-11. Conventional rounding takes bit 15 of the
accumulator, zero-extends it and adds it to the Most Significant Word (msw), excluding the guard
or overflow bits (bits 16 through 31). If the Least Significant Word (lsw) of the accumulator is
between 0x8000 and 0xFFFF (0x8000 included), the msw is incremented. If the lsw of the accu-
mulator is between 0x0000 and 0x7FFF, the msw remains unchanged. A consequence of this
algorithm is that over a succession of random rounding operations, the value tends to be biased
slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding
except when the lsw equals 0x8000. If this is the case, the LSb of the msw (bit 16 of the accu-
mulator) is examined. If it is ‘1’, the msw is incremented. If it is ‘0’, the msw is not modified.
Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that
may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of
the contents of the target accumulator to data memory via the X-bus (subject to data saturation).
For more information, refer to Section 2.6.3.3 “Data Space Write Saturation”.

For the MAC class of instructions, the accumulator write-back data path is always subject to
rounding.

Figure 2-11: Conventional and Convergent Rounding Modes

01516

01516

01516

01516

1000 0000 0000 00001XXX XXXX XXXX XXXX

0XXX XXXX XXXX XXXX 1000 0000 0000 0000

1

0

Conventional (Biased) Convergent (Unbiased)

Round Up (add 1 to msw) when:

Round Down (add nothing) when:

Round Up (add 1 to msw) when:

1. lsw = 0x8000 and bit 16 = 1
2. lsw > 0x8000

lsw >= 0x8000

lsw < 0x8000
Round Down (add nothing) when:
1. lsw = 0x8000 and bit 16 = 0
2. lsw < 0x8000

msw

msw

msw

msw
© 2007 Microchip Technology Inc. DS70204A-page 2-25

dsPIC33F Family Reference Manual
2.6.5 Barrel Shifter

The barrel shifter can perform up to a 16-bit arithmetic right shift, or up to a 16-bit left shift, in a
single cycle. DSP or MSU instructions can use the barrel shifter for multi-bit shifts.

The shifter requires a signed binary value to determine both the magnitude (number of bits) and
direction of the shift operation:

• A positive value shifts the operand right

• A negative value shifts the operand left.

• A value of ‘0’ does not modify the operand

The barrel shifter is 40 bits wide to accommodate the width of the accumulators. A 40-bit output
result is provided for DSP shift operations, and a 16-bit result is provided for MCU shift
operations.

Table 2-6 provides a summary of instructions that use the barrel shifter.

Table 2-6: Instructions that Use the DSP Engine Barrel Shifter

2.6.6 DSP Engine Mode Selection

These operational characteristics of the DSP engine discussed in previous sections can be
selected through the CPU Core Configuration register (CORCON):

• Fractional or integer multiply operation

• Conventional or convergent rounding

• Automatic saturation on/off for ACCA

• Automatic saturation on/off for ACCB

• Automatic saturation on/off for writes to data memory

• Accumulator Saturation mode selection

2.6.7 DSP Engine Trap Events

Arithmetic error traps that can be generated for handling exceptions in the DSP engine are
selected through the Interrupt Control register (INTCON1). These are:

• Trap on ACCA overflow enable, using OVATE (INTCON1<10>)

• Trap on ACCB overflow enable, using OVBTE (INTCON1<9>)

• Trap on catastrophic ACCA and/or ACCB overflow enable, using COVTE (INTCON1<8>)

Occurrence of the traps is indicated by these error status bits:

• OVAERR (INTCON1<14>)

• OVBERR (INTCON1<13>)

• COVAERR (INTCON1<12>)

• COVBERR (INTCON1<11>)

An arithmetic error trap is also generated when the user application attempts to shift a value
beyond the maximum allowable range (±16 bits) using the SFTAC instruction. This trap source
cannot be disabled, and is indicated by the Shift Accumulator Error Status (SFTACERR) bit
(INTCON1<7> in the Interrupt controller). The instruction will execute, but the results of the shift
are not written to the target accumulator.

For further information on bits in the INTCON1 register and arithmetic error traps, refer to
Section 6. “Reset Interrupts”.

Instruction Description

ASR Arithmetic multi-bit right shift of data memory location

LSR Logical multi-bit right shift of data memory location

SL Multi-bit shift left of data memory location

SAC Store DSP accumulator with optional shift

SFTAC Shift DSP accumulator
DS70204A-page 2-26 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.7 DIVIDE SUPPORT

The dsPIC33F supports the following types of division operations:

• DIVF: 16/16 signed fractional divide

• DIV.SD: 32/16 signed divide

• DIV.UD: 32/16 unsigned divide

• DIV.SW: 16/16 signed divide

• DIV.UW: 16/16 unsigned divide

The quotient for all divide instructions is placed in working register W0. The remainder is placed
in W1. The 16-bit divisor can be located in any W register. A 16-bit dividend can be located in
any W register and a 32-bit dividend must be located in an adjacent pair of W registers.

All divide instructions are iterative operations and must be executed 18 times within a REPEAT
loop. The developer is responsible for programming the REPEAT instruction. A complete divide
operation takes 19 instruction cycles to execute.

The divide flow is interruptible, just like any other REPEAT loop. All data is restored into the
respective data registers after each iteration of the loop, so the user application is responsible
for saving the appropriate W registers in the ISR. Although they are important to the divide
hardware, the intermediate values in the W registers have no meaning to the user application.
The divide instructions must be executed 18 times in a REPEAT loop to produce a meaningful
result.

A divide-by-zero error generates a math error trap. This condition is indicated by the Math Error
Status (DIV0ERR) bit (INTCON1<6> in the Interrupt controller).

For more information and programming examples for the divide instructions, refer to the
“dsPIC30F/dsPIC33F Programmer’s Reference Manual” (DS70157).
© 2007 Microchip Technology Inc. DS70204A-page 2-27

dsPIC33F Family Reference Manual
2.8 INSTRUCTION FLOW TYPES

Most instructions in the dsPIC33F architecture occupy a single word of program memory and
execute in a single cycle. An instruction pre-fetch mechanism facilitates single cycle (1 TCY)
execution. However, some instructions take two or three instruction cycles to execute.
Consequently, there are seven different types of instruction flow in the dsPIC®DSC architecture.
These are described in this section:

2.8.1 1 Instruction Word, 1 Instruction Cycle

These instructions take one instruction cycle to execute as shown in Figure 2-12. Most
instructions are 1-word, 1-cycle instructions.

Figure 2-12: Instruction Flow – 1-Word, 1-Cycle

2.8.2 1 Instruction Word, 2 Instruction Cycles

In these instructions, there is no pre-fetch flush. The only instructions of this type are the MOV.D
instructions (load and store double-word). Two cycles are required to complete these
instructions, as shown in Figure 2-13.

Figure 2-13: Instruction Flow – 1-Word, 2-Cycle (MOV.D Operation)

2.8.3 1 Instruction Word, 2 or 3 Instruction Cycle (Program Flow
Changes)

These instructions include relative call and branch instructions, and skip instructions. When an
instruction changes the PC (other than to increment it), the program memory prefetch data must
be discarded. This makes the instruction take two effective cycles to execute, as shown in
Figure 2-14.

Figure 2-14: Instruction Flow – 1-Word, 2-Cycle (Program Flow Change)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV #0x55AA,W0 Fetch 1 Execute 1

2. MOV W0,PORTA Fetch 2 Execute 2

3. MOV W0,PORTB Fetch 3 Execute 3

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV #0x1234,W0 Fetch 1 Execute 1

2. MOV.D [W0++],W1 Fetch 2 Execute 2
R/W Cycle 1

3. MOV #0x00AA,W1 Fetch 3 Execute 2
R/W Cycle2

No Fetch Execute 3

4. MOV #0x00CC,W0 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV.B #0x55,W0 Fetch 1 Execute 1

2. BTSC PORTA,#3 Fetch 2 Execute 2
Skip Taken

3. ADD.B PORTA (executed as NOP) Fetch 3 Forced NOP

4. BRA SUB_1 Fetch 4 Execute 4

5. ADD.B PORTB (executed as NOP) Fetch 5 Forced NOP

6. SUB_1: Instruction @ address SUB_1 Fetch SUB_1
DS70204A-page 2-28 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

Three cycles are required when a two-word instruction is skipped. In this case, the program
memory prefetch data is discarded and the second word of the two-word instruction is fetched.
Figure 2-15 shows the second word of the instruction is executed as a NOP.

Figure 2-15: Instruction Flow – 1-Word, 3-Cycle (2-Word Instruction Skipped)

2.8.4 1 Instruction Word, 3 Instruction Cycles (RETFIE, RETURN,
RETLW)

Figure 2-16 shows the RETFIE, RETURN and RETLW instructions, used to return from a
subroutine call or an Interrupt Service Routine, take three instruction cycles to execute.

Figure 2-16: Instruction Flow – 1-Word, 3-Cycle (RETURN, RETFIE, RETLW)

2.8.5 Table Read/Write Instructions

These instructions suspend fetching to insert a read or write cycle to the program memory.
Figure 2-17 shows the instruction fetched while executing the table operation is saved for one
cycle and executed in the cycle immediately after the table operation.

Figure 2-17: Instruction Pipeline Flow – Table Operations

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. BTSC SR,#Z Fetch 1 Execute 1,
Skip Taken

2. GOTO LABEL Fetch 2 Forced NOP

(GOTO 2nd word) Fetch 2nd
word of
GOTO

2nd word
executed as
a NOP

3. BCLR PORTB,#3 Fetch 3 Execute 3

4. MOV W0,W1 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV #0x55AA,W0 Fetch 1 Execute 1

2. RETURN Fetch 2 Execute 2

3. (instruction in old program flow) Fetch 3 Execute 2

4. MOV W0, W3 (instruction in new program flow) No Fetch Execute 2

5. MOV W3, W5 Fetch 4 Execute 4

Fetch 5

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV #0x1234,W0 Fetch 1 Execute 1

2. TBLRDL.w [W0++],W1 Fetch 2 Execute 2

3. MOV #0x00AA,W1 Fetch 3 PM Data
Read Cycle

Bus Read Execute 3

4. MOV #0x00CC,W0 Fetch 4 Execute 4
© 2007 Microchip Technology Inc. DS70204A-page 2-29

dsPIC33F Family Reference Manual
2.8.6 2 Instruction Words, 2 Instruction Cycles

In these instructions, the fetch after the instruction contains data. This results in a 2-cycle
instruction, as shown in Figure 2-18. The second word of a two-word instruction is encoded so
that it executes as a NOP if it is fetched by the CPU when the CPU did not first fetch the first word
of the instruction. This is important when a two-word instruction is skipped by a skip instruction
(refer to Figure 2-15).

Figure 2-18: Instruction Pipeline Flow – 2-Word, 2-Cycle

2.8.7 Address Register Dependencies

These are instructions subjected to a stall due to a data address dependency between the X-data
space read and write operations. An additional cycle is inserted to resolve the resource conflict,
as discussed in Section 2.10 “Address Register Dependencies”.

Figure 2-19: Instruction Pipeline Flow – 1-Word, 1-Cycle (With Instruction Stall)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV #0xAA55,W0 Fetch 1 Execute 1

2. GOTO LABEL Fetch 2L Update PC

Fetch 2H Forced NOP

3. LABEL: MOV W0,W2 Fetch 3 Execute 3

4. BSET PORTA, #3 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1. MOV W0,W1 Fetch 1 Execute 1

2. MOV [W1],[W4] Fetch 2 Execute 1

Stall Execute 2

3. MOV W2,W1 Fetch 3 Execute 3
DS70204A-page 2-30 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.9 LOOP CONSTRUCTS

The dsPIC33F supports both REPEAT and DO instruction constructs to provide unconditional
automatic program loop control. The REPEAT instruction implements a single instruction program
loop. The DO instruction implements a multiple instruction program loop. Both instructions use
control bits within the CPU Status register (SR) to temporarily modify CPU operation.

2.9.1 REPEAT Loop Construct

The REPEAT instruction causes the instruction that follows it to be repeated a specified number
of times. A literal value contained in the instruction or a value in one of the W registers can be
used to specify the REPEAT count value. The W register option enables the loop count to be a
software variable.

An instruction in a REPEAT loop is executed at least once. The number of iterations for a REPEAT
loop is the 14-bit literal value + 1, or Wn + 1.

The syntax for the two forms of the REPEAT instruction is:

REPEAT #lit14 ; RCOUNT <-- lit14
(Valid target Instruction)

or

REPEAT Wn ; RCOUNT <-- Wn
(Valid target Instruction)

2.9.1.1 REPEAT OPERATION

The loop count for REPEAT operations is held in the 14-bit REPEAT Loop Counter (RCOUNT) reg-
ister, which is memory mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT
instruction sets the REPEAT Loop Active (RA) status bit (SR<4>) to ‘1’ if the RCOUNT is a
non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the Program Counter is not incremented. Further Program Counter increments
are inhibited until RCOUNT = 0. For an instruction flow example of a REPEAT loop, refer to
Figure 2-20.

For a loop count value equal to ‘0’, REPEAT has the effect of a NOP and the RA (SR<4>) bit is not
set. The REPEAT loop is essentially disabled before it begins, allowing the target instruction to
execute only once while prefetching the subsequent instruction (i.e., normal execution flow).

Figure 2-20: REPEAT Instruction Pipeline Flow

Note: The instruction immediately following the REPEAT instruction (i.e., the target
instruction) is always executed at least one time, and it is always executed one time
more than the value specified in the 14-bit literal or the W register operand.

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5

1.REPEAT #0x2 Fetch 1 Execute 1

2.MAC W4*W5,A,[W8]+=2,W4 Fetch 2 Execute 2

No Fetch Execute 2

No Fetch Execute 2

3.BSET PORTA,#3 Fetch 3 Execute 3

PC (at end of
instruction)

PC PC+2 PC+2 PC+2 PC+4 PC+6

RCOUNT
(at end of
instruction)

X 2 1 0 0 0

RA (d f 0 1 1 0 0 0
© 2007 Microchip Technology Inc. DS70204A-page 2-31

dsPIC33F Family Reference Manual
2.9.1.2 INTERRUPTING A REPEAT LOOP

A REPEAT instruction loop can be interrupted at any time.

The state of the RA bit is preserved on the stack during exception processing to enable the user
application to execute further REPEAT loops from within any number of nested interrupts. After
SRL is stacked, the RA status bit is cleared to restore normal execution flow within the Interrupt
Service Routine.

Returning into a REPEAT loop from an ISR using the RETFIE instruction requires no special
handling. Interrupts pre-fetch the repeated instruction during the third cycle of the RETFIE
instruction. The stacked RA bit is restored when the SRL register is popped and, if set, the inter-
rupted REPEAT loop is resumed.

2.9.1.2.1 Early Termination of a REPEAT Loop

An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

2.9.1.3 RESTRICTIONS ON THE REPEAT INSTRUCTION

Any instruction can immediately follow a REPEAT except for the following:

• Program Flow Control instructions (any branch, compare and skip, subroutine calls,
returns, etc.)

• Another REPEAT or DO instruction

• DISI, ULNK, LNK, PWRSAV, or RESET

• MOV.D instruction

Note: If a REPEAT loop has been interrupted, and an ISR is being processed, the user
application must stack the REPEAT Count (RCOUNT) register before it executes
another REPEAT instruction within an ISR.

Note: If a REPEAT instruction is used within an ISR, the user application must unstack the
RCOUNT register before it executes the RETFIE instruction.

Note: Should the repeated instruction (target instruction in the REPEAT loop) access data
from Program Space using PSV, it will require two instruction cycles the first time it
is executed after a return from an exception. Similar to the first iteration of a loop,
timing limitations do not allow the first instruction to access data residing in Program
Space in a single instruction cycle.

Note: Some instructions and/or instruction addressing modes can be executed within a
REPEAT loop, but it might not make sense to repeat all instructions.
DS70204A-page 2-32 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.9.2 DO Loop Construct

The DO instruction can execute a group of instructions that follow it a specified number of times
without software overhead. The set of instructions up to and including the end address are
repeated. The REPEAT count value for the DO instruction can be specified by a 14-bit literal or by
the contents of a W register declared within the instruction.

The syntax for the 14-bit literal form of the DO instruction is:

DO #lit14,LOOP_END ; DCOUNT <-- lit14
Instruction1
Instruction2
:
:

LOOP_END: Instruction n

The syntax for the W register declared form of the DO instruction is:

DO Wn,LOOP_END ; DCOUNT <-- Wn<13:0>
Instruction1

 Instruction2
:
:

LOOP_END: Instruction n

The following features are provided in the DO loop construct:

• A W register can be used to specify the loop count, which allows the loop count to be
defined at run-time

• The instruction execution order need not be sequential (i.e., there can be branches, sub-
routine calls, etc.)

• The loop end address need not be greater than the start address

2.9.2.1 DO LOOP REGISTERS AND OPERATION

The number of iterations executed by a DO loop will be the 14-bit literal value +1 or the Wn value
+ 1. If a W register is used to specify the number of iterations, the two Most Significant bits are
not used to specify the loop count. The operation of a DO loop is similar to the DO-WHILE con-
struct in the C programming language because the instructions in the loop will always be exe-
cuted at least once.

The dsPIC33F has three registers associated with DO loops:

• The DO Loop Start Address (DOSTART) register holds the starting address of the DO loop. It
is a 22-bit register

• The DO Loop End Address (DOEND) register holds the end address of the DO loop. It is a
22-bit register

• The DO Loop Counter (DCOUNT) register holds the number of iterations to be executed by
the loop. It is a 16-bit register

These registers are memory mapped and are automatically loaded by the hardware when the DO
instruction is executed. The MSb and LSb of these registers is fixed to ‘0’. The LSb is not stored
in these registers because PC<0> is always forced to ‘0’.

The DO Loop Active (DA) status bit (SR<9>) indicates that a single DO loop (or nested DO loops)
is active. When a DO instruction is executed, the DA bit is set, which enables the Program
Counter address to be compared with the DOEND register on each subsequent instruction cycle.
When the Program Counter matches the value in DOEND, DCOUNT is decremented.
© 2007 Microchip Technology Inc. DS70204A-page 2-33

dsPIC33F Family Reference Manual
If the DCOUNT register is not zero, the Program Counter is loaded with the address contained
in the DOSTART register to start another iteration of the DO loop. When DCOUNT reaches zero,
the DO loop terminates.

If no other nested DO loops are in progress, the DA bit is also cleared.

2.9.2.2 DO LOOP NESTING

The DOSTART, DOEND and DCOUNT registers each have an associated shadow register that
allows the DO loop hardware to support one level of automatic nesting. The DOSTART, DOEND
and DCOUNT registers are user accessible. They can be manually saved to permit additional
nesting, where required.

The DO Loop Nesting Level (DL<2:0>) status bits (CORCON<10:8>) indicate the nesting level of
the DO loop currently being executed. When the first DO instruction is executed, DL<2:0> is set
to B‘001’ to indicate that one level of DO loop is underway. The DO Loop Active (DA) bit (SR<9>)
is also set.

When another DO instruction is executed within the first DO loop, the DOSTART, DOEND and
DCOUNT registers are transferred into the shadow registers before they are updated with the
new loop values. The DL<2:0> bits are set to B‘010’ to indicate that a second, nested DO loop
is in progress. The DA (SR<9>) bit also remains set.

If no more than one level of DO loop nesting is required in the application, no special attention is
required. However, if the user application requires more than one level of DO loop nesting, it can
be achieved by saving the DOSTART, DOEND and DCOUNT registers before executing the next
DO instruction. These registers should be saved whenever DL<2:0> is B’010’ or greater.

The DOSTART, DOEND and DCOUNT registers are automatically restored from their shadow
registers when a DO loop terminates and DL<2:0> = B’010’.

2.9.2.3 INTERRUPTING A DO LOOP

DO loops can be interrupted at any time. If another DO loop is to be executed during the ISR, the
user application must check the DL<2:0> status bits and save the DOSTART, DOEND and
DCOUNT registers as required.

No special handling is required if the user application can ensure that only one level of DO loop
will be executed in:

• Both background and any one ISR handler (if interrupt nesting is enabled) or

• Both background and any ISR (if interrupt nesting is disabled)

Alternatively, up to two (nested) DO loops can be executed in either background or within:

• One ISR handler (if interrupt nesting is enabled) or

• Any ISR (if interrupt nesting is disabled)

It is assumed that no DO loops are used within any trap handlers.

Returning to a DO loop from an ISR using the RETFIE instruction requires no special handling.

Note: The group of instructions in a DO loop construct is always executed at least one
time. The DO loop is always executed one time more than the value specified in the
literal or W register operand.

Note: The DL<2:0> (CORCON<10:8>) bits are combined (logically ORed) to form the DA
(SR<9>) bit. If nested DO loops are being executed, the DA bit is cleared only when
the loop count associated with the outermost loop expires.
DS70204A-page 2-34 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.9.2.4 EARLY TERMINATION OF THE DO LOOP

There are two ways to terminate a DO loop earlier than normal:

• The Early DO Loop Termination Control (EDT) bit (CORCON<11>) provides a means for
the user application to terminate a DO loop before it completes all loops. Writing a ‘1’ to the
EDT bit forces the loop to complete the iteration underway and then terminate. If EDT is set
during the next-to-last (penultimate) or last instruction of the loop, one more iteration of the
loop occurs. EDT always reads as a ‘0’; clearing it has no effect. After the EDT bit is set,
the user can optionally branch out of the DO loop

• Alternatively, the code can branch out of the loop at any point except from the last instruc-
tion, which cannot be a flow-control instruction. Although the DA (SR<9>) bit enables the
DO loop hardware, it has no effect unless the address of the penultimate instruction is
encountered during an instruction pre-fetch. This is not a recommended method for
terminating a DO loop

2.9.2.5 DO LOOP RESTRICTIONS

The use of DO loops imposes restrictions such as:

• When the DOEND register can be read

• Certain instructions must not be used as the last instruction in the loop

• Certain small loop lengths are prohibited, as listed in Table 2-7 (loop length refers to the
size of the block of instructions that is being repeated in the loop)

2.9.2.5.1 DOEND Register Restrictions

All DO loops must contain at least two instructions because the loop termination tests are
performed in the penultimate instruction. REPEAT should be used for single instruction loops.

The special function register, DOEND, cannot be read by user software in the instruction that
immediately follows either a DO instruction or a file register write operation to the DOEND SFR.

The instruction before the penultimate instruction in a DO loop should not modify:

• CPU priority level governed by the CPU Interrupt Priority Level (IPL) status bits (SR<7:5>)

• Peripheral Interrupt Enable bits governed by Interrupt Enable Control registers IEC0, IEC1
and IEC2

• Peripheral Interrupt Priority bits governed by Interrupt Priority Control registers IPC0
through IPC11

If these restrictions are not observed, the DO loop may execute incorrectly.

2.9.2.5.2 Last Instruction Restrictions

The last instruction in a DO loop should not be any of the following:

• Flow control instruction (e.g., any branch, compare and skip, GOTO, CALL, RCALL, TRAP)

• Another REPEAT or DO instruction

• Target instruction within a REPEAT loop. This restriction implies that the penultimate
instruction also cannot be a REPEAT

• Any instruction that occupies two words in program space

• DISI instruction

RETURN, RETFIE and RETLW work correctly as the last instruction of a DO loop, but the user
application is responsible for returning to the loop to complete it.

Note: Exiting a DO loop without using EDT is not recommended because the hardware will
continue to check for DOEND addresses.
© 2007 Microchip Technology Inc. DS70204A-page 2-35

dsPIC33F Family Reference Manual
2.9.2.5.3 Loop Length Restrictions

Loop length is defined as the signed offset of the last instruction from the first instruction in the
DO loop. The loop length, when added to the address of the first instruction in the loop, forms the
address of the last instruction of the loop. Table 2-7 lists the loop lengths to avoid.

Table 2-7: Loop Lengths to Avoid

Loop Length Reason to Avoid

-2 Execution starts at the first instruction in the loop (i.e., at the Program Counter address) and
continues until the loop-end address (in this case [PC – 4]) is prefetched. As this is the first word of
the DO instruction, it executes the DO instruction again, re-initializing the DCOUNT and pre-fetching
[PC]. This continues forever as long as the loop end address [PC – 4] is prefetched. This value of n
has the potential of creating an infinite loop (subject to a Watchdog Timer Reset).
For example:

end_loop: DO #33, end_loop ;DO is a two-word instruction
NOP ;2nd word of DO executes as a NOP
ADD W2,W3,W4 ;First instruction in DO loop([PC])

-1 Execution starts at the first instruction in the loop (i.e., at [PC]) and continues until the loop end
address ([PC – 2]) is prefetched. Since the loop end address is the second word of the DO
instruction, it executes as a NOP but will still pre-fetch [PC]. The loop will then execute again. This
will continue as long as the loop end address [PC – 2] is prefetched and the loop does not terminate.
Should the value in the DCOUNT register reach zero and on a subsequent decrement generate a
borrow, the loop will terminate. However, in such a case the initial instruction outside the loop is
once again the first loop instruction.
For example:

DO #33, end_loop ;DO is a two-word instruction
end_loop: NOP ;2nd word of DO executes as a NOP

ADD W2,W3,W4 ;First instruction in DO loop([PC])

0 Execution starts at the first instruction in the loop (i.e., at [PC]) and continues until the loop end
address ([PC]) is prefetched. If the loop continues, this prefetch causes the DO loop hardware to load
the DOEND address ([PC]) into the PC for the next fetch (which will be [PC] again). After the first true
iteration of the loop, the first instruction in the loop executes repeatedly until the loop count
underflows and the loop terminates. When this occurs, the initial instruction outside the loop is the
instruction after [PC].

For example:

DO #33, end_loop ;DO is a two-word instruction
NOP ;2nd word of DO executes as a NOP

end_loop: ADD W2,W3,W4 ;First instruction in DO loop([PC])
DS70204A-page 2-36 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.10 ADDRESS REGISTER DEPENDENCIES

The dsPIC33F architecture supports a data space read (source) and a data space write
(destination) for most MCU class instructions. The effective address (EA) calculation by the AGU,
and subsequent data space read or write, each take one instruction cycle to complete. This
timing causes the data space read and write operations for each instruction to partially overlap,
as shown in Figure 2-21. Because of this overlap, a ‘Read-After-Write’ (RAW) data dependency
can occur across instruction boundaries. RAW data dependencies are detected and handled at
run-time by the dsPIC33F CPU.

Figure 2-21: Data Space Access Timing

2.10.1 Read-After-Write Dependency Rules

If the W register is used as a write operation destination in the current instruction and the W
register being read in the pre-fetched instruction are the same, the following rules apply:

• If the destination write (current instruction) does not modify the contents of Wn, no stalls will
occur

• If the source read (pre-fetched instruction) does not calculate an EA using Wn, no stalls will
occur

During each instruction cycle, the dsPIC33F hardware automatically checks to see if a RAW data
dependency is about to occur. If the conditions specified above are not satisfied, the CPU
automatically adds a one-instruction-cycle delay before executing the pre-fetched instruction.
The instruction stall provides enough time for the destination W register write to take place before
the next (pre-fetched) instruction needs to use the written data. Table 2-8 is a Read-After-Write
Dependency Summary.

ADD MOV

[W7]

[W10] [W9]++

X-Space Address W7 W10 W8 W9

Add W0, [W7], [W10]
MOV [W8], [W9]++

[W8] X-Space RAGU

Instruction Register
 Contents

 X-Space WAGU

1 Instruction Cycle (TCY)

TCY0 TCY1 TCY2
© 2007 Microchip Technology Inc. DS70204A-page 2-37

dsPIC33F Family Reference Manual
Table 2-8: Read-After-Write Dependency Summary

2.10.2 Instruction Stall Cycles

An instruction stall is essentially a wait period instruction cycle added in front of the read phase
of an instruction to allow the prior write to complete before the next read operation. For the
purposes of interrupt latency, the stall cycle is associated with the instruction following the
instruction where it was detected (i.e., stall cycles always precede instruction execution cycles).

If a RAW data dependency is detected, the dsPIC33F begins an instruction stall. During an
instruction stall, the following events occur:

• The write operation underway (for the previous instruction) is allowed to complete as normal.

• Data space is not addressed until after the instruction stall.

• PC increment is inhibited until after the instruction stall.

• Further instruction fetches are inhibited until after the instruction stall.

2.10.2.1 INSTRUCTION STALL CYCLES AND INTERRUPTS

When an interrupt event coincides with two adjacent instructions that will cause an instruction
stall, one of two possible outcomes can occur:

• If the interrupt coincides with the first instruction, the first instruction is allowed to complete
while the second instruction is executed after the ISR completes. In this case, the stall
cycle is eliminated from the second instruction because the exception process provides
time for the first instruction to complete the write phase

• If the interrupt coincides with the second instruction, the second instruction and the
appended stall cycle are allowed to execute before to the ISR. In this case, the stall cycle
associated with the second instruction executes normally. However, the stall cycle is
effectively absorbed into the exception process timing. The exception process proceeds as
if an ordinary two-cycle instruction was interrupted

Destination
Addressing Mode

using Wn

Source
Addressing Mode

using Wn
Status

Examples
(Wn = W2)

Direct Direct Allowed ADD.w W0, W1, W2
MOV.w W2, W3

Direct Indirect Stall ADD.w W0, W1, W2
MOV.w [W2], W3

Direct Indirect with
modification

Stall ADD.w W0, W1, W2
MOV.w [W2++], W3

Indirect Direct Allowed ADD.w W0, W1, [W2]
MOV.w W2, W3

Indirect Indirect Allowed ADD.w W0, W1, [W2]
MOV.w [W2], W3

Indirect Indirect with
modification

Allowed ADD.w W0, W1, [W2]
MOV.w [W2++], W3

Indirect with
modification

Direct Allowed ADD.w W0, W1, [W2++]
MOV.w W2, W3

Indirect Indirect Stall ADD.w W0, W1, [W2]
MOV.w [W2], W3
; W2=0x0004 (mapped W2)

Indirect Indirect with
modification

Stall ADD.w W0, W1, [W2]
MOV.w [W2++], W3
; W2=0x0004 (mapped W2)

Indirect with
modification

Indirect Stall ADD.w W0, W1, [W2++]
MOV.w [W2], W3

Indirect with
modification

Indirect with
modification

Stall ADD.w W0, W1, [W2++]
MOV.w [W2++], W3
DS70204A-page 2-38 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

2.10.2.2 INSTRUCTION STALL CYCLES AND FLOW CHANGE INSTRUCTIONS

The CALL and RCALL instructions write to the stack using working register W15 and can, there-
fore, force an instruction stall prior to the next instruction, if the source read of the next instruction
uses W15.

The RETFIE and RETURN instructions can never force an instruction stall prior to the next
instruction because they only perform read operations. However, the RETLW instruction can force
a stall, because it writes to a W register during the last cycle.

The GOTO and branch instructions can never force an instruction stall because they do not
perform write operations.

2.10.2.3 INSTRUCTION STALLS AND DO AND REPEAT LOOPS

Other than the addition of instruction stall cycles, RAW data dependencies do not affect the
operation of either DO or REPEAT loops.

The pre-fetched instruction within a REPEAT loop does not change until the loop is complete or
an exception occurs. Although register dependency checks occur across instruction boundaries,
the dsPIC33F effectively compares the source and destination of the same instruction during a
REPEAT loop.

The last instruction of a DO loop either pre-fetches the instruction at the loop start address or the
next instruction (outside the loop). The instruction stall decision is based on the last instruction
in the loop and the contents of the pre-fetched instruction.

2.10.2.4 INSTRUCTION STALLS AND PROGRAM SPACE VISIBILITY (PSV)

When program space (PS) is mapped to data space by enabling the PSV (CORCON<2>) bit, and
the X space EA falls within the visible program space window, the read or write cycle redirects to
the address in program space. Accessing data from program space takes up to 3 instruction
cycles.

Instructions operating in PSV address space are subject to RAW data dependencies and
consequent instruction stalls, just like any other instruction.

Consider the following code segment:

ADD W0,[W1],[W2++] ; PSV = 1, W1=0x8000, PSVPAG=0xAA
MOV [W2],[W3]

This sequence of instructions would take five instruction cycles to execute. Two instruction cycles
are added to perform the PSV access via W1. An instruction stall cycle is inserted to resolve the
RAW data dependency caused by W2.

2.11 REGISTER MAPS

Table 2-9 is a summary of the registers associated with the dsPIC33F CPU.
© 2007 Microchip Technology Inc. DS70204A-page 2-39

d
sP

IC
33F

 F
am

ily R
eferen

ce M
an

u
al

D
S

70204A
-page 2-40

©
 2007 M

icrochip T
echnology Inc.

Bit 2 Bit 1 Bit 0 Reset State

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx

0 xxxx xxxx xxxx xxx0

TARTH 0000 0000 00xx xxxx

0 xxxx xxxx xxxx xxx0

NDH 0000 0000 00xx xxxx

OV Z C 0000 0000 0000 0000

PSV RND IF 0000 0000 0010 0000

XWM<3:0> 0000 0000 0000 0000
.

Table 2-9: dsPIC33F CPU Register Map
 Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3

W0 0000 W0 (WREG)

W1 0002 W1

W2 0004 W2

W3 0006 W3

W4 0008 W4

W5 000A W5

W6 000C W6

W7 000E W7

W8 0010 W8

W9 0012 W9

W10 0014 W10

W11 0016 W11

W12 0018 W12

W13 001A W13

W14 001C W14

W15 001E W15

SPLIM 0020 SPLIM

ACCAL 0022 ACCAL

ACCAH 0024 ACCAH

ACCAU 0026 Sign-extension of ACCA<39> ACCAU

ACCBL 0028 ACCBL

ACCBH 002A ACCBH

ACCBU 002C Sign-extension of ACCB<39> ACCBU

PCL 002E PCL

PCH 0030 — — — — — — — — — PCH

TBLPAG 0032 — — — — — — — — TBLPAG

PSVPAG 0034 — — — — — — — — PSVPAG

RCOUNT 0036 RCOUNT

DCOUNT 0038 DCOUNT

DOSTARTL 003A DOSTARTL

DOSTARTH 003C — — — — — — — — — — DOS

DOENDL 003E DOENDL

DOENDH 0040 — — — — — — — — — — DOE

SR 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N

CORCON 0044 — — — US EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3

MODCON 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0>

©
 2007 M

icrochip T
echnology Inc.

D
S

70204A
-page 2-41

S
ectio

n
 2. C

P
U

2

XM 0 xxxx xxxx xxxx xxx0

XM 1 xxxx xxxx xxxx xxx1

YM 0 xxxx xxxx xxxx xxx0

YM 1 xxxx xxxx xxxx xxx1

XB xxxx xxxx xxxx xxxx

DI 0000 0000 0000 0000

L
N

Ta

Bit 2 Bit 1 Bit 0 Reset State
CPU

ODSRT 0048 XMODSRT<15:0>

ODEND 004A XMODEND<15:0>

ODSRT 004C YMODSRT<15:0>

ODEND 004E YMODEND<15:0>

REV 0050 BREN XBREV<14:0>

SICNT 0052 — — DISICNT<13:0>

egend: x = uninitiated
ote: Refer to the device data sheet for specific Core Register Map details.

ble 2-9: dsPIC33F CPU Register Map (Continued)

 Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3

dsPIC33F Family Reference Manual
2.12 Related Application Notes

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F Product Family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the dsPIC33F CPU are:

Title Application Note #

No related application notes at this time.

Note: For additional Application Notes and code examples for the dsPIC33F device
family, visit the Microchip web site (www.microchip.com).
DS70204A-page 2-42 © 2007 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 2. CPU
C

P
U

2

2.13 Revision History

Revision A (April 2007)

This is the initial release of this document.
© 2007 Microchip Technology Inc. DS70204A-page 2-43

dsPIC33F Family Reference Manual
NOTES:
DS70204A-page 2-44 © 2007 Microchip Technology Inc.

Section 2. CPU
C

P
U

2

© 2007 Microchip Technology Inc. DS70204A-page 2-45

	Section 2. CPU
	2.1 Introduction
	2.1.1 Registers
	2.1.2 Instruction Set
	2.1.3 Data Space Addressing
	2.1.4 Addressing Modes
	2.1.5 DSP Engine and Instructions
	2.1.6 Exception Processing
	Figure 2-1: dsPIC33F CPU Block Diagram

	2.2 Programmer’s Model
	Table 2-1: Programmer’s Model Register Descriptions
	Figure 2-2: Programmer’s Model
	2.2.1 Working Register Array
	2.2.1.1 Register Instructions
	2.2.1.2 File Register Instructions
	2.2.1.3 W Register Memory Mapping
	2.2.1.4 W Registers and Byte Mode Instructions

	2.2.2 Shadow Registers
	2.2.2.1 PUSH.S and POP.S Shadow Registers
	2.2.2.2 DO Loop Shadow Registers

	2.2.3 Uninitialized W Register Reset

	2.3 Software Stack Pointer
	Figure 2-3: Stack Operation for a CALL Instruction
	2.3.1 Software Stack Examples
	Figure 2-4: Stack Pointer at Device Reset
	Figure 2-5: Stack Pointer After the First PUSH Instruction
	Figure 2-6: Stack Pointer After the Second PUSH Instruction
	Figure 2-7: Stack Pointer After a POP Instruction
	2.3.2 W14 Software Stack Frame Pointer
	2.3.3 Stack Pointer Overflow
	2.3.4 Stack Pointer Underflow

	2.4 CPU Register Descriptions
	2.4.1 SR: CPU Status Register
	2.4.2 CORCON: Core Control Register
	Register 2-1: SR: CPU Status Register
	Register 2-2: CORCON: Core Control Register�
	2.4.3 Other dsPIC33F CPU Control Registers

	2.5 Arithmetic Logic Unit (ALU)
	2.5.1 Byte to Word Conversion

	2.6 DSP Engine
	Figure 2-8: DSP Engine Block Diagram
	2.6.1 Data Accumulators
	2.6.2 Multiplier
	Table 2-2: dsPIC33F Data Ranges
	Figure 2-9: Integer and Fractional Representation of 0x4001
	Figure 2-10: Integer and Fractional Representation of 0xC002
	2.6.2.1 DSP Multiply Instructions

	Table 2-3: DSP Instructions that Use the Multiplier
	2.6.2.2 MCU Multiply Instructions

	Table 2-4: MCU Instructions that Utilize the Multiplier
	2.6.3 Data Accumulator Adder/Subtractor
	2.6.3.1 Accumulator Status Bits

	Table 2-5: Accumulator Overflow and Saturation Status Bits
	2.6.3.2 Saturation and Overflow Modes
	2.6.3.3 Data Space Write Saturation
	2.6.3.4 Accumulator ‘Write Back’

	2.6.4 Round Logic
	Figure 2-11: Conventional and Convergent Rounding Modes
	2.6.5 Barrel Shifter
	Table 2-6: Instructions that Use the DSP Engine Barrel Shifter
	2.6.6 DSP Engine Mode Selection
	2.6.7 DSP Engine Trap Events

	2.7 Divide Support
	2.8 Instruction Flow Types
	2.8.1 1 Instruction Word, 1 Instruction Cycle
	Figure 2-12: Instruction Flow – 1-Word, 1-Cycle
	2.8.2 1 Instruction Word, 2 Instruction Cycles
	Figure 2-13: Instruction Flow – 1-Word, 2-Cycle (MOV.D Operation)
	2.8.3 1 Instruction Word, 2 or 3 Instruction Cycle (Program Flow Changes)
	Figure 2-14: Instruction Flow – 1-Word, 2-Cycle (Program Flow Change)
	Figure 2-15: Instruction Flow – 1-Word, 3-Cycle (2-Word Instruction Skipped)
	2.8.4 1 Instruction Word, 3 Instruction Cycles (RETFIE, RETURN, RETLW)
	Figure 2-16: Instruction Flow – 1-Word, 3-Cycle (RETURN, RETFIE, RETLW)
	2.8.5 Table Read/Write Instructions
	Figure 2-17: Instruction Pipeline Flow – Table Operations
	2.8.6 2 Instruction Words, 2 Instruction Cycles
	Figure 2-18: Instruction Pipeline Flow – 2-Word, 2-Cycle
	2.8.7 Address Register Dependencies
	Figure 2-19: Instruction Pipeline Flow – 1-Word, 1-Cycle (With Instruction Stall)

	2.9 Loop Constructs
	2.9.1 REPEAT Loop Construct
	2.9.1.1 REPEAT Operation

	Figure 2-20: REPEAT Instruction Pipeline Flow
	2.9.1.2 Interrupting a REPEAT Loop
	2.9.1.2.1 Early Termination of a REPEAT Loop

	2.9.1.3 Restrictions on the REPEAT Instruction

	2.9.2 DO Loop Construct
	2.9.2.1 DO Loop Registers and Operation
	2.9.2.2 DO Loop Nesting
	2.9.2.3 Interrupting a DO Loop
	2.9.2.4 Early Termination of the DO loop
	2.9.2.5 DO Loop Restrictions
	2.9.2.5.1 DOEND Register Restrictions
	2.9.2.5.2 Last Instruction Restrictions
	2.9.2.5.3 Loop Length Restrictions

	Table 2-7: Loop Lengths to Avoid�

	2.10 Address Register Dependencies
	Figure 2-21: Data Space Access Timing
	2.10.1 Read-After-Write Dependency Rules
	Table 2-8: Read-After-Write Dependency Summary
	2.10.2 Instruction Stall Cycles
	2.10.2.1 Instruction Stall Cycles and Interrupts
	2.10.2.2 Instruction Stall Cycles and Flow Change Instructions
	2.10.2.3 Instruction Stalls and DO and REPEAT Loops
	2.10.2.4 Instruction Stalls and Program Space Visibility (PSV)

	2.11 Register Maps
	Table 2-9: dsPIC33F CPU Register Map�

	2.12 Related Application Notes
	2.13 Revision History

